Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 12(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36359591

RESUMO

In this study, we used magnetic resonance imaging (MRI) to identify the different brain phenotypes within apparently healthy children and to evaluate whether these phenotypes had different prenatal characteristics. We included 65 healthy children (mean age, 10 years old) with normal neurological examinations and without structural abnormalities. We performed cluster analyses to identify the different brain phenotypes in the brain MRI images. We performed descriptive analyses, including demographic and perinatal characteristics, to assess the differences between the clusters. We identified two clusters: Cluster 1, or the "small brain phenotype" (n = 44), which was characterized by a global reduction in the brain volumes, with smaller total intracranial volumes (1044.53 ± 68.37 vs. 1200.87 ± 65.92 cm3 (p < 0.001)), total grey-matter volumes (644.65 ± 38.85 vs. 746.79 ± 39.37 cm3 (p < 0.001)), and total white-matter volumes (383.68 ± 40.17 vs. 443.55 ± 36.27 cm3 (p < 0.001)), compared with Cluster 2, or the "normal brain phenotype" (n = 21). Moreover, almost all the brain areas had decreased volumes, except for the ventricles, caudate nuclei, and pallidum areas. The risk of belonging to "the small phenotype" was 82% if the child was preterm, 76% if he/she was born small for his/her gestational age and up to 80% if the mother smoked during the pregnancy. However, preterm birth appears to be the only substantially significant risk factor associated with decreased brain volumes.

2.
Children (Basel) ; 10(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36670638

RESUMO

Visual assessment in preverbal children mostly relies on the preferential looking paradigm. It requires an experienced observer to interpret the child's responses to a stimulus. DIVE (Device for an Integral Visual Examination) is a digital tool with an integrated eye tracker (ET) that lifts this requirement and automatizes this process. The aim of our study was to assess the development of two visual functions, visual acuity (VA) and contrast sensitivity (CS), with DIVE, in a large sample of children from 6 months to 14 years (y) of age, and to compare the results of preterm and full-term children. Participants were recruited in clinical settings from five countries. There were 2208 children tested, 609 of them were born preterm. Both VA and CS improved throughout childhood, with the maximum increase during the first 5 years of age. Gestational age, refractive error and age had an impact on VA results, while CS values were only influenced by age. With this study we report normative reference outcomes for VA and CS throughout childhood and validate the DIVE tests as a useful tool to measure basic visual functions in children.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...